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Abstract
Triple Negative Breast Cancer (TNBC) is the most aggressive
type of breast cancer. It is a heterogeneous disease that is
based on immune histochemistry analyses 1. It is negative
for estrogen receptor, progesterone receptor and human
epidermal growth factor receptor 2.TNBC is significantly
observed in young African American women and Hispanic
women who carry amutation in the BRCA gene. Obesity has
an increased risk for developing TBNC, especially for
premenopausal and post-menopausal women. The relation
between obesity and TNBC remains difficult to understand.
Many studies hypothesized that increased adipose cytokine,
Adipokine, mainly Apelin levels due to obesity could be a
major factor contributing to both tumor growth and
metastasis in TNBC obese patients. Poor prognosis and poor
response to treatment are the major characteristics of
TNBC. The anti-type II diabetes drug metformin can reduce
risk of breast cancer, improves survival of breast cancer
patients. It helps to inhibit specific molecular subtypes.
Also, Metformin inhibits cell proliferation, colony formation,
GM1lipid rafts in TNBC. It activates intrinsic and extrinsic
metformin signaling pathways only in TNBC cell lines. These
breast cancer cells are extremely dependent on glucose and
lipids which are metabolized for the production of energy
and proliferation of TNBC cells. So, metformin can induce
lipid metabolisms, especially targeting fatty acid synthase,
cholesterol biosynthesis. Many researches demonstrated
that Metformin can stop several strong enzymes going into
glucose metabolism. It has significant role on inhibiting
carbohydrate metabolism and lipid metabolism. By
increasing key metabolic defect of carbohydrate and lipid
metabolism this drug can reduce obesity for TNBC patients.
The actual aim of this paper to highlight the partial role of
metformin in cellular building blocks and in decreasing a
high rate of TNBC cells proliferation, especially against
highly aggressive malignant cancer cells for TNBC obese
patients.
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Introduction
Triple Negative Breast cancer is aggressive comparatively

other type breast cancer. Obesity is known to have a strong

linkage with cancer. Many researchers utter that in 2018
2,66,000 and 64,000 patients are diagnosed for new invasive
and in situ breast cancer respectively. This led to a study which
was conducted in 2008 to examine generally 620 white women
and the results showed that out of the 620 white women that
were examined, 117 of them had TNBC and that fraction had a
strong relation with obesity [1]. The study also revealed that
50% of the patients with TNBC were obese compared to 36% of
obese patients with no TNBC [2]. Obesity has a linkage with risk
factors for cancer. Nonetheless, Body Mass Index (BMI) is not
only measured for adiposity where WHR or Waist – to – Hip ratio
has specific measures of central or abdominal obesity. The high
risk of breast cancer has been associated with a common
corollary of metabolic syndrome and type 2DM. Meta-analysis
studies conducted in 2007 for twenty (20) patients estimated a
20% increased risk of breast cancer for women with type 2DM
(RR=1.20; 95%Cl, 1.12-1.8) [3].

In the instance where comparison is done between lean
patients and breast cancer patients who are also obese, the
obese breast cancer patients have more risk of recurrence and a
worse prognosis. The outcome of a study where samples of
495,477 US women were taken indicated that increasing Body
Mass Index (BMI) was significantly associated with increased
death rates for breast cancer patients [4]. As compared to the
lowest BMI group (18.5-24.9), there was an increased risk of
34% for BMI of 250-299(RR=1.70; 95%Cl, 1.33-2.21) and for BMI
˃ 40.0 (RR=2.12; 95%Cl, 1.41 – 3.19) for dying breast cancer
patients. Physical activities and weight loss are inversely
associated with breast cancer dangers and recurrence as
suggested by several epidemiological studies [5]. Patients with
BMI ˃25 kg/m2 had significant benefits through post diagnosis
exercise. Interestingly, physical activity after diagnosis played a
vital role in the reduction of breast cancer deaths by 50%
(RR=0.50; 95% Cl, 0.34-74) for tumors with no significant effect
on patients with ER- tumors [6-11]. There are lots of recent
studies which highly indicated that abdominal obesity improves
breast cancer development and outcomes through other
mechanism as well and also system shifts in Carbohydrate and
fat metabolism up regulation of pro-carcinogenic factors such as
cytokines and growth factors (like insulin and insulin like growth
factors, modulation of the immune system and macrophage
activation have significant effect on obesity and breast cancer as
well. Comparatively, breast cancer patients who are obese have
more usual recurrence and worse prognosis than lean patients.
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Improvement in insulin resistance or blood glucose may also
mediate this effect. According to the Women's Intervention
Nutrition Study (WINS), 2437 women were examined with
breast cancer [12]. This was a randomized study that engages a
dietary intervention group intending to lower the percentage of
calories from fat to 15% without impairing the nutrition of these
group of people. Another factor that seems to moderate the
recurrence and mortality of breast cancer survivors is alcohol
consumption. Recent studies conducted on 1,897 individuals
revealed that three to four times of alcohol consumption per
week was related to 35% (HR=1.35; 95%, 1.00- 1.83) High risk of
breast cancer recurrence and 51% (HR=1.5; 95%Cl, 1.00-2.29)
increased risk of death as a result of breast cancer [13,14]. A
study demonstrated that for all women with both obesity type II
diabetes, the risk of breast cancer increases by as much as 20%
[15]. Some studies showed that Gestational diabetes, pre-
diabetes or family history of diabetes also enhances risk for
breast cancer for women [15,16].

Metformin hydrochloride is a diabetes medicine. It is
generally used for managing type II diabetes. Because
Metformin does not cause weight gain and may help with
weight loss, it is generally prescribed for overweight people with
type II diabetes. Triple negative breast cancer is one kind of
breast cancer whose tumors do not express estrogen receptor,
progesterone receptor and HER2 receptor. Approximately
15%-20% among other breast cancer patients are suffering from
TNBC. Only chemotherapy can be used for treatment of triple
negative breast cancer. Novel targeted therapies would be best
for TNBC survives [17-19]. A study of 2012 demonstrated that
inhibition of over expression of Fatty acid synthase induces
apoptosis of breast cancer cell lines [20]. Another research
proved that Metformin decreases fatty acid synthase,
cholesterol biosynthesis and GM1 lipid rafts in Triple Negative
Breast Cancer cells. There are so many studies which indicate
that both obesity and type II highly increase risk of hormone
receptor positive breast cancer and also anticipate that obesity
plays a vital role to increase breast cancer in young African
women (pre-menopausal) and most of the time these type
women are diagnosed with Triple Negative Breast cancer. In
general, targeted therapeutics would be effective for TNBC
[21-26].

Insulin and TNBC and Role of Metformin
Insulin stimulates glucose transport by translocation of GLUT4

proteins from an intracellular vesicular compartment to plasma
membrane. Once GLUT4 recruitment occurs. The transpote
inserts into plasma membrane allowing uptake of glucose into
cell. When cells in our muscles, fat and liver cannot response
properly to insulin and abdicate glucose from our blood, insulin
resistance occurs. There are significant relationship between
obesity and type 2 diabetes. Reducing of insulin stimulated
glucose transport, metabolism in adipocytes and skeletal muscle
are main cause of insulin resistance for obesity and type 2
diabetic. Insulin is known for its linkage between obesity and
breast cancers. Up regulation of insulin has been hypothesized
to directly increase the proliferation of breast cancer cells and
breast tissue.

Hyperglycemia and hyperinsulinemia are associated with poor
prognosis as suggested by data [27]. Functional imbalance also
creates the down regulation of the major insulin-responsive
glucose transported GLUT4 [28]. In 2007, a case- control study
was conducted to examine blood samples in generally
premenopausal individuals. The results indicated that high
insulin levels and C- peptide were not risks associated with
breast cancer. Generally insulin binding IRS-1 and IRS-2 receptor
for both muscle and adipocytes. IRS-1 plays a vital role in
increasing insulin action, including binding and activation of
Phosphotidyplinostio (PI)-3 Kinase and glucose transport [28].
Obese, type 2 diabetic patients’ skeletal has normal IRS-1 And
IRS-2 protein levels but P13 activity with these [29].

Epidemiologic studies demonstrated that the risk of diabetes
and presumably insulin resistance increases according to body
fat content (measured by BMI) increases from the very lean to
the very obese and body fat has intrinsic roles in insulin
resistance [30]. The relationship between insulin resistance and
obesity is measured by adiposity and BMI. Only central obesity
has significant linkage with insulin resistance, type 2 diabetes
and cardiovascular disease [31]. On the other hand for some
biochemical structure of intra-abdominal adipocytes may have
direct source with insulin sensitivity. A leading hypothesis
regarding intra-abdominal reported that adipocytes are active
lipolytically for average receptors. It may cause for excessive
intraportal FFA level and flux which promotes insulin resistance.
So many studies has been investigated the molecular
mechanism of TNBC and for the better understanding of these
mechanism will help to design novel therapy for TNBC.

Excessive amount of C-peptide/ Insulin increases breast
cancer risk factor [32]. IGF1-1 plays a vital role to induce
apoptotic activity and to control cell and body size [33]. Many
researchers proved that the increased activity and level of
compared to normal breast has significant relation with breast
cancer risk [34-39]. Our main focus is about TNBC. So we found
lots of studies which reported that in TNBC cell lines high IGF-1R
receptors has been shown and it helps to develop TNBC and this
IGF-1R has strong association with obesity [40,41]. BRCA1 and
P53 suppressor gene mutation reduces the activity to resist the
increasing level of IGF-1R gene expression [42]. Many studies
demonstrated that IGFBP-3 has positive association with BMI
and TNBC. This IGFBP-3 has six proteins and they are highly
related with poor prognosis for ER, PR negativity, S-phase
fraction and tumor size. This IGBP-3 has association with TNBC
developing which has bonding with high expression of epidermal
growth factor. It also promotes to increase TNBC cells by
inducing Sphk-1 mediated EGFR signaling [43-48].

Insulin like growth factor has three ligands, they are IGF-1,
IGF-2 and insulin which stimulates signal by paralogous receptor
proteins and they are located in plasma membrane. IGF-1, IGF-2
have high relation with type-I receptor and where insulin has
high affection for insulin receptor.

The ligands collaborate extracellular domains of receptors
which promote the phosphorylation of intracellular adaptor
receptors. Increased cell survival, proliferation and migration are
promoting by Mitogen-Activated Protein Kinase (MAPK) and AKT
by leading of signaling cascades.
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Metformin is a biguanide drug is used as a treatment for
weight loss, type 2 diabetes, especially in the presence of insulin
resistance [49]. By activating of AMP-activated protein kinase, is
shown in fig 2 it helps to improve hyperglycemia through
concealment of hepatic gluconeogenesis and these biological
functions of Metformin plays a significant role in insulin signaling
[49]. In contrast Metformin leads AMPK activity which is known
as the cause of GLUT4, this GLUT4 develops plasma membrane
and as a result it occurs insulin independent glucose uptake. In
addition Metformin raises insulin sensitivity, promotes
peripheral glucose uptake and fatty acid oxidation [50] (Figure
1).

Figure 1: Association between insulin-leptin-adiponectin
levels and triple negative breast cancer cell proliferation.

Mechanism of Metformin to Reduce
Adiponectin in TNBC

A protein exclusively secreted by the adipose tissue and
improves the insulin – sensitivity levels of the entire body is
known as adiponectin. Insulin sensitivity levels of adiponectin
are inversely correlated with obesity. In a study where 527
patients were sampled and diagnosed with stage I- III breast
cancer. They showed adiponectin levels above 15.5 µg/mL. This
level justifies improved breast cancer survival rate (HR=0.39;
95%Cl, 0.15-0.95) [51,52]. The role of the adiponectin pathway
in Single Nucleotide Polymorphism (SNPs) was demonstrated in
breast cancer. This was observed through a case-control study
on 763 breast cancer patients. The study revealed that two
functional polymorphisms of ADIPOQ and one functional
polymorphism which has exhibited the ability to change mRNA
levels in ADIPORI had significant relation with a high risk of
breast cancer. The development of obesity mainly depends on
the balance between white adipose tissue and brown adipose
tissues. White adipose tissue works for reserving energy and
brown tissue works for energy expenditure [53]. Otherwise,
brown tissue can affect body metabolism and it can change
insulin sensitivity which is responsible to induce obesity [54-56].
Because of obesity not only insulin resistance is increased but
also adipose tissue cannot work for energy leading to the
reservation of secretory endocrine organs of cytokines,

hormones, and proteins that regulate the function of cells and
tissues all over the body [57]. Obesity creates a collection of
lipids in adipocytes, producing cellular stress and activation of
JNK and NF-kB pathways [58,59].

Phosphorylation of proteins, different transcriptional events
which help to induce pro- inflammatory molecules, TNF-alpha,
IL-6, leptin, resistin, chemokines are promoted by these
proliferated signaling pathways and they are significantly
responsible for producing monocytes and other inflammatory
cells to the adipose tissues. Many cytokines and chemokines are
expressed more by the induced inflammatory signal from
macrophages which is differentiated from monocyte [60]. In
obese patients, T-cell works for producing and promoting pro-
inflammatory cytokines and macrophages to the adipose tissue
[61]. Adipose tissue can make a connection with each adipocyte,
by inflammation signal of inflammatory fat and cells and adipose
tissue can keep association with multiple vascular capillaries
[62]. Inducing fat microcirculation could promote adipose tissue
inflammation.

As our main focus is on TNBC, the question regarding the
association between adipocyte and TNBC cannot be left
unanswered. High adipogenesis plays a role for worst survival in
TNBC is shown in fig 1. High adipogenesis has a strong
association with metabolism gene sets; oxidative
phosphorylation, fatty acid metabolism, peroxisome, and
reactive oxygen species pathway. High adipogenesis TNBC
suppresses PDL-1 and PDL-2 and immune checkpoint molecules
index, also it is responsible for HRD [63]. As reported by other
studies, adiponectin prevents the activities of aromatase and
estrogen receptors, a phenomenon that would act on ER tumors
[64]. The overexpression of adiponectin lowers mammary tumor
size both locally and systemically as shown in studies relating to
animals [65]. A study regarding this topic declared that
adipocyte has a great impact on cancer progression by raising
highly complex cancer cells [66]. Intra-tumoral adipocytes with
genes that have an association with inflammation and
metastasis, rather than cell proliferation-related gene sets [67].
In addition, intra-tumoral causes inflammation, hypoxia, and
angiogenesis [68-70]. Another study revealed the reason behind
having strong cell density in proliferated cancer cells where
adipocytes cannot move easily in the tumor microenvironment.
Also, that study demonstrated that the connection between
adipocytes and adipogenesis is not strong in breast cancer and
specially adipogenesis in TNBC. Hod lower adipocytes, immune
and proliferated pathways, because high adipogenesis TNBC has
a significant relation with metabolic-related gene sets, due to
this function it is one of the reasons of worst survival. In
contrast, TNBC with high adipogenesis and metabolic activity
has the worst survival for infiltration of immune cells rather than
high cell proliferation. Several studies indicate that adipogenesis
is amplified in fat-related pathways rather than the abundance
of adipocytes. There is a strong marker for cancer and that is the
ratio of leptin to adiponectin in serum [71,72].

With the help of osteogenesis and activation of AMPK in
adipocytes, Metformin decreases adipocytes and this is shown
in several studies [73]. Another study explained that metformin
has poor resistance to adipogenesis in murine C3H10T1/2 MSCs
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[74]. For all cell types, different specific effects of Metformin can
inhibit adipogenesis by AMPK activation. So many researchers
have reported that Metformin has a linkage with differentiated
cell lines such as pre-osteoblasts, pre-adipocytes, myoblasts, and
neuronal mouse cell lines [75-78], instead of more primitive cell
progenitors. For cell differentiation, there is a different time for
specific signaling pathways. Early-stage differentiation is
regulated by the late stage of the Akt/mTOR signaling pathway's
activation. With AMPK assays there is fixed activity of Metformin
for the adipogenesis process. Metformin can activate the
reduction of PPAR-gamma-Runx2 ratio and mTOR thus, inhibit
adipogenesis. The differentiation of MSCs into osteoblasts and
adipocytes is regulated by Metformin and it can reduce the
mTOR signaling pathways at the early stage. This study also
reported that aggressive MEFS is observed to gather lipid and
induces the expression of C/EBP- beta to an adipogenic cocktail
of IID plus PIO. So, Metformin has a strong ability to inhibit
adipogenesis by the activation of AMPK in different cell lines.

Role of Metformin to Control in
dysregulation of Carbohydrate and Lipid
Metabolism in TNBC

When energy is stored as a triglycerides and obesity is one of
criterion which is developed by diet, age, genes, physical
activities [79,80]. Then what is the effect of obesity on metabolic
change? Adipose tissue which produce adipokines like leptin,
adiponectin, apelin etc., which regulate metabolic process in the
body [81]. The main mechanism of insulin is to keep glucose
level lower in blood from concealment of hepatic glucose
production and the increased glucose uptake into muscle and
adipose tissue via GLUT4. Adipose tissue express lower glucose
level into body and by this lower disposal muscle insulin
stimulates glucose uptake in higher level in vivo. Various studies
have promoted that in systemic glucose homeostasis glucose
uptake transform into fat. For obesity GLUT4 become over
expressed which causes insulin sensitivity and glucose tolerance
[82]. In contrast for obesity this down regulation of GLUT4
occurs and for this case insulin stimulates glucose transport
which is decreased in adipocytes [83].

Obesity has significant effect on lipid metabolism and it is well
known that obesity has strong connection with increased basal
lipolysis in adipose tissue and promotes circulating FFAS [84].
Several functions play key role to induce basal lipolysis such as
acute phase Serum Amyloid A (SAA), alipholytic adipokine in
humans. Lipolysis helps to increase SAA production from long
adipocytes into circulation which also promotes insulin
resistance. Function of SAA circulated through CLA-1 and extra
cellular signal regulated kinase signaling pathway and it raises
lipolysis directly [85]. Several studies demonstrated that plasma
triglyceride concentration is also metabolic variable and for
obesity it’s affected. Glucose uptake is activated by insulin which
promotes Very Low Density Lipoprotein (VLDL), TG production
rate and it regulated to endogenous hypertrigly ceridemia
[86-88].Because of obesity lipoprotein lipase is started to
decrease and it activates lipolysis of chylomicon-TG and inactive
inhibition of hormone sensitive lipase mediated lipolysis in

adipose tissue [89]. For obesity excess fatty acid increases
expression in the prandial period, in normal which is suppressed
by insulin and it helps to impact on glucose uptake by as much
as 50% [90]. SAA has also significant association with cholesterol
metabolism and High Density Lipoprotein (HDL) [91]. Excess
obesity regulates SAA in obesity which may be connected
between obesity and low HDL.

For the systemic dysregulation of lipid and carbohydrate
metabolism causes metabolic syndrome and type II diabetes.
These type II diabetes and metabolic syndrome are known as
risk factor of breast cancer [92-94]. With these disorder the
increased level of insulin resistance and insulin like growth factor
are responsible for breast cancer and worst prognosis. A study
highlighted that metabolic dysregulation plays a vital role in
serum glucose and other energy precursors such as fructose and
glucosomine which can be metabolized to adenosine
triphosphate which helps to proliferate cancer cell and tumor
growth in hypoxic environment [95]. Carbohydrate metabolism
dysregulation is used as aerobic glycolysis is well known as
hallmark of cancer [96].

A study used a carcinogen-induced rodent model of
tumorigenesis and showed that overfed obese animals which is
similar to metabolic syndrome which increased 50% glucose
uptake by mammary tumor cells and it has strong relation with
cancer cell proliferation and it was noticed in human breast
cancer cells in vitro [97]. Also that rotent model reported that
Metformin has anti cancer effect and this study’s
epidemiological data showed that patients who are suffering
from metabolic syndrome or type II diabetics were able to
reduce cancer incidence and improves survival by consuming
Metformin [98-100]. Metformin has strong potent against triple
negative breast cancer because TNBC is dependent on glucose
and glutamine and Metformin inhibits significantly
mitochondrial respiration in TNBC cancer cells [101].

Activity of Metformin to inhibit FASN in
TNBC

Adipose tissue is now known to play an important role and
activate the endocrine organ. It is very well established that
adipocytes aids in the storage and release of energy throughout
the human body. Adipose tissue may play an important role in
Fatty Acid (FA) FLUX and it changes to energize the body in the
fasting state. Generally, adipose tissue releases FAs but in the
fed state, adipocyte absorbs FAs from circulating triglycerides
[102]. When the function will be inversely proportional then
obesity, insulin resistance, dyslipemia inflammation,
atherosclerosis, hypertension occurs [103,104]. PPAR-gamma or
PPARG (Peroxisome Proliferator Activated Receptor Gamma) is
known as the glitazone receptor NR1C3 (nuclear receptor
subfamily.1 groupc, members) is type II nuclear receptor that is
encoded by the PPARG gene PPAR-gamma and plays a significant
role in metabolism by regulating many genes [105] and they are
involved in fatty acid synthesis. Exogenously derived and
endogenously synthesized FA maintains substrates for energy
metabolism. The two key enzymes of lipogenesis which are Fatty
Acid Synthase and Acetyl- CoA-Carboxylase play an important
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role for weight of abdominal adipose tissue [106]. In addition,
FASN as a multifunctional enzymatic complex performs a role in
the regulation of body weight and increases obesity [106-108].
High intake of carbohydrate diet helps FASN to accelerate
endogenous FA biosynthesis in liver and adipose tissue [109]. So
many studies have shown higher gene expression of obese vs
lean separately [110-112]. In contrast a study has demonstrated
the role of FASN in obesity by using BMI and metabolic
parameters and so many studies have explained association of
FASN activity and its expression with obesity, insulin resistance
and adipocytokine serum profile.

TNBC has poor prognosis and there is no targeted therapy
available for triple negative breast cancer. A study has shown
that FASN expression has association with increasing TNBC in
clinico-histopathological means [113]. This study proved this
using 100 primary TNBC tumors and it is assessed by
immunohistochemistry of FASN, EGFR and C15/6 vimentin
expression. One of lipogenic enzyme fatty acid synthase are
generally responsible for increasing neoplastic disease and its
overexpression are seen in activities of inducing neoplastic
disease [113]. The protein acylation, biological membrane,
synthesis, DNA synthesis and cell cycle proliferation of cancer
cells are promoted by long chain of fatty acid de novo synthesis.
Several studies have demonstrated that FASN’s over expression
could serve as potential biomarkers and therapeutic targets for
so many carcinomas. This could be used for breast cancer also.
So many studies have shown that reducing FASN increases
apoptosis in couple of cancer cells and decreases the growth of
human xenografts [114-127]. A study experimented by 29 core –
biopsies of TNBC patients and preclinical studies showed that
FASN reduction could re- sensitize doxorubicin resistant cell
lines. Also, another study which was done using 100 primary
TNBC women and were diagnosed between 1990 and 2012 at
Hospital Universitri by Dr. Josep Trueta (Giona, Spain). The study
showed that FASN expression was positive in almost all TNBC
samples (92%). High FASN expression was observed in 45% of
TNBC samples. Among the same patients, 22% were observed to
have lower FASN expression in non-tumoral tissues. A cohort
study analyzed that FASN was positive in 92% of tumor tissue
samples and 45% have high FASN levels and this study also
reported that FASN expression has relation with positive nod
involvement.

Some studies previously showed that identification of tumor
cells in lymph nodes will be helpful to predict patient’s outcome.
So many researches demonstrated that overexpression of FASN
is detected as poor prognosis marker in several cancers such as
lung, ovarian, gastric or in early breast cancer carcinomas
patients. Some preclinical studies reported that FASN expression
plays a vital role in drug resistant [128-130].

Metformin kills stem cells, triple negative breast cancer cell
lines as FASN has complexity with de novo fatty synthesis and it
is essential for TNBC survival. Metformin induces FASN
expression and helps to induce apoptosis in TNBC cell lines
[131]. According to TNBC structure, the cells of TNBC are
sensitive to metformin action. Significantly, cancer stem cells
have over expression and dependent on lipogenic enzymes and
FASN as well [132-135]. If CSCs are more dependent on FASN,

then TNBC are proportionally sensitive to Metformin. This idea
has proved why TNBC is sensitive to metformin [136,137]. In
Luminal Estrogen Receptor Positive Breast Cancer Cells, FASN is
strongly controlled by estrogen and progesterone receptors
[138-147]. On FASN and lipogenesis, several kinds of cancer’s
metastasis, invasion, chemoresistance are dependent [148-150].
These characteristics are also significant in TNBC and that
confirms that metformin can be activated to reduce FASN in
TNBC. A study experimented and reported that 10 mM
metformin effectively reduce FASN in TNBC cells. This study also
proved that ten top genes of fatty acid and cholesterol
biosynthesis pathways are decreased by metformin. Many
studies have shown that several mRNA have been defined as
targeting FASN directly or indirectly. Another study promoted
that by increasing up regulation of miR- 193b, metformin can
reduce apoptosis, reduce FASN and memosphere formation of
TNBC [151-173].

THE STAT 3 SIGNALING PATHWAY IN TNBC
More recently, many efforts have been made to identify

targetable molecules for treating TNBC through genomic
profiling and numerous critical changes have been found,
including the overexpression and aberrant activation of Signal
Transducer and Activator of Transcription 3 (STAT3) [174,175].
The emerging data suggest that STAT3 may be a potential
molecular target and biomarker for TNBC. The STAT family of
transcription factors is comprised of seven members with high
structural and functional similarity, including STAT1, STAT2,
STAT3, STAT4, STAT5a, STAT5b, and STAT6 [176,177]. All STAT
proteins consist of an amino acid domain (NH2), a Coiled-Coil
Domain (CCD) for binding with interactive proteins, a DNA
Binding Domain (DBD), a linker domain, a SRC Homology 2 (SH2)
domain for phosphorylation and dimerization, and a C-terminal
Transactivation Domain (TAD) [177]. Most of these domains are
highly conserved among STAT proteins and only TAD is divergent
and mainly contributes to their structure diversity [178]. STAT3
was initially discovered to bind to DNA in response to
interleukin-6 (IL-6) and Epidermal Growth Factor (EGF) in 1994
[179,180]. Over the past decades, STAT3 has become one of the
most investigated oncogenic transcription factors and is highly
associated with cancer initiation, progression, metastasis,
chemoresistance, and immune evasion [181,182]. The recent
evidence from both preclinical and clinical studies have
demonstrated that STAT3 plays a critical role in TNBC and STAT3
inhibitors have shown efficacy in inhibiting TNBC tumor growth
and metastasis. Considering that there is an unmet medical
need for TNBC treatment and innovative therapeutic agents are
urgently required, an in-depth understanding of the roles of
STAT3 in TNBC will facilitate the development of STAT3 targeted
therapeutics and pave the way for a novel TNBC treatment
approach.

The oncogenic prospects of Stat3 have been noticed generally
through its engagement in modulating the expression of genes
associated with proliferation of cancer cells, self-renewal of
stem cells and maintenance and autophagy [183,184]. Most
especially, the overexpression of Stat 3 and activation in TNBC
which is most often related to the initiation of TNBC,
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progression, metastasis and resistance to chemotherapy and
abysmal survival results. Stat 3 does not only play a role of
eliciting the expression of cancer related genes, but have contact
interaction and functionally ally with other oncogenic
transcription factors. Example of which is the GLT1 which
enhances the aggressiveness of TNBC. A recently conducted
study has also realized a reduction of the Gene related to the
Retinoic – Interferon- Induced Mortality 19 (GRIM-19) an
integral inhibitor of Stat 3 transcription escorted by the
overexpression of Stat 3 in TNBC. TCPTP plus two splice variants
TC45 and TC48 have shown down- regulation in the cells of
TNBC in vivo and in vitro which also plays a role in the stat 3
signaling activation [185]. A recent study revealed that
acetylated Stat 3 is heightened in TNBC, leading to the
methylation and inactivation of tumor- suppressor gene
promoters [186]. Indeed, STAT3 has also been found to localize
in the mitochondria, where it is termed mitoSTAT3 and regulates
the mitochondrial functions, including electron transport chain,
ATP synthesis, calcium homeostasis, and Reactive Oxygen
Species (ROS) accumulation [187,188]. Moreover, mitoSTAT3 has
been shown to promote breast cancer cell growth, in which the
phosphorylation of Serine 727 plays a critical role [189]. Of note,
several approved drugs have shown potent inhibitory effects on
pSTAT3 and may be repositioned as anticancer drugs.
Niclosamide, an FDA-approved anthelmintic drug was identified
as a potent STAT3 inhibitor. A recent study demonstrated that
niclosamide not only inhibits TNBC cell viability but also
sensitizes TNBC cells to Ionizing Irradiation (IR) by blocking IR-
induced STAT3 phosphorylation and activation [190].
Flubendazole, another wildly used anthelmintic agent and
disulfiram, a clinical drug for treating chronic alcoholism were
found to eradicate TNBC stem cells-like cells that express high
levels of pSTAT3 [191,192]. Further studies showed that both
drugs were able to cause TNBC cell growth arrest and apoptosis
in vitro and suppress TNBC tumor growth, angiogenesis, and
metastasis in vivo by inhibiting STAT3 [191,192]. Moreover,
salinomycin, an antibacterial and coccidiostat ionophore
therapeutic drug and metformin, an antidiabetic drug has
exhibited potent inhibitory effects on STAT3 phosphorylation
and TNBC cell growth in vitro [193,194]. However, further
evaluation of their anti-TNBC efficacy in in vivo models is
critically needed. Recent studies have disclosed that targeting
STAT3 acetylation may be a potential therapeutic approach for
treating cancer. SH-I-14, a newly synthesized carbazole was
shown to inhibit STAT3 phosphorylation through increasing
SHP-1 expression [195]. A follow-up study reported that SH-I-14
also inhibited STAT3 acetylation and disrupted DNMT1-STAT3
interaction, resulting in DNA demethylation and re-expression of
tumor suppressor genes [196]. It’s in vitro and in vivo activity
has also been demonstrated in TNBC model, suggesting the
effectiveness of inhibiting STAT3 acetylation in TNBC therapy
(Figure 2).

Figure 2: Mechanism of metformin to activate adenosine
monophosphate activated protein kinase pathway ( AMPK).

METFORMIN as inhibitor of STAT3
signaling pathway in TNBC

Metformin (1,1-dimethylbiguanide hydrochloride), the most
frequently used first-line drug for type 2 diabetes worldwide,
has recently been appreciated to have anticancer properties. It
is widely reported to act through up regulation of Adenosine
Monophosphate-activated Protein Kinase (AMPK) [197,198] the
mammalian Target of Rapamycin (mTOR), the ribosomal protein
S6 kinase and the eIF4E-binding protein 1.22 Metformin has
been shown to decrease breast cancer risk [199-202] and
improve survival in patients with breast cancer [203-206]. A
retrospective, non-randomized study has recently shown that
the addition of metformin to neoadjuvant chemotherapy results
in a significantly higher rate of pathologic complete response
[206]. Metformin has been shown to inhibit mammary
carcinogenesis, growth, migration and invasion in vivo and in
vitro in animal and cell line model systems [207]. On the basis of
these data, several randomized trials of metformin (typically in
combination with other agents) have been initiated in breast
cancer patients. We have shown that metformin preferentially
affects TN breast cancer cells, inducing partial S-phase arrest
and apoptosis. In contrast, in other breast cancer subtypes
(luminal A, B and HER2-expressing cells), it induces a partial G1
cell cycle arrest without apoptosis induction. Others have
reported that metformin may selectively target breast cancer
stem cells, weaken TGFβ-induced EMT and modulate cancer-
associated inflammation and an immune response [207]. Given
the known overexpression and activation of Stat3 in TNBC, we
conducted studies to determine whether metformin might have
a previously unrecognized role in down regulating Stat3
expression and/or activity in this subtype of breast cancer.

In a study conducted by Deng was revealed that metformin
inhibits growth and cell signaling where they initially studied
metformin’s anti-proliferation /anti-survival activity against six
basal breast cancers cell lines MDA-MB-468, HCC70, HCC1806,
MDA231, BT20 and HCC1937 and established IC50s for each line.
The result revealed that Metformin induced growth inhibition in
each of the six TN cell lines with MDA 468 and HCC70 showing
the greatest sensitivity.

Further studies were conducted using four representative
lines treated with metformin at corresponding IC50s. Western
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Blot was employed to analyze for signaling changes and it
showed that Metformin impressively lowered both tyrosine and
serine phosphorylation of STAT3 (P Stat 3 at tyr705 or Ser727)
with modest to limited changes in Stat 3 protein expression.

Conclusion
Triple negative breast cancer has few potent targeted

therapeutic options, because of its aggressive phenotype
feature and its molecularly diversity. It also has strong chemo
resistance. Usually, TNBC patients have worst survival rate and
cancer cells have two types of effects for carbohydrate and lipid
metabolism, these are “Warburg effect’’ and “Lipid switch”,
respectively. When women are suffering from metabolic
dysregulation, often they are connected significantly with
cancer, especially breast cancer and TNBC. In this paper we have
demonstrated that anti type II diabetic drug metformin has
potent feature to reduce triple negative breast cancer risk factor,
especially for TNBC patients who are obese. Usually metformin
works with two main functions. One is insulin-dependent and
another is insulin independent. We also mentioned so many
researches where it was proved that metformin induces
biological responses and it plays a vital role to reduce TNBC.
Other studies demonstrated that it’s mechanism to induce
biological and molecular responses are responsible for reducing
breast cancer as well. For inhibiting TNBC, metformin plays so
many functions such as targets STAT3 signaling pathway, FASN,
decreases lipid and carbohydrate dysregulation, which have
significant association with breast cancer and TNBC which are
highlighted in our study. Another recent study reported that
metformin attenuates over twenty genes and enzymes that are
responsible for cholesterol biosynthesis in TNBC. An important
matter we want to highlight is that triple negative tumors are
more expressive in younger and in black women. There are
several studies that anticipated that African American women
are affected more by TNBC. Their data demonstrated about a
27% diagnosed breast cancer patients and they were
premenopausal African American. Among them, 27% were
African and 25% were younger black British women.
Undoubtedly, obesity has significant relation with breast cancer,
but obese African American women are affected more rather
than others. There are recent studies which have done clinical
experiment with metformin for non-diabetic breast cancer
patients. A review study reported that metformin not only works
for diabetic breast cancer patients but also works for non-
diabetic lung cancer, prostate cancer, endometroid endometrial
cancer. A study experimented with obese non-diabetic breast
cancer patients. In that experiment, 1000 mg/day metformin
was more effective than placebo 500 mg/day metformin. Other
randomized control clinical trial showed by giving 50 mg/day
metformin for six months reduced the number of metastatic
cases of hormonal therapy. For all of these studies, we are
proposing that maybe metformin could be effective therapeutic
drug for non-diabetic African American triple negative obese
breast cancer patients.
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