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Abstract
Prostate Cancer (Pca) is a highly heterogeneous disease and
the second more common tumor in males. Molecular and
genetic profiles have been used to identify subtypes and
guide therapeutic intervention. However, roughly 26% of
primary Pca are driven by unknown molecular lesions. We
use Principal Component Analysis (PCA) and custom RNA-
seq data normalization to identify a gene expression
signature which segregates primary Prostate
Adenocarcinoma (PRAD) from normal tissues. This Core-
Expression Signature (PRAD-CES) includes 33 genes and
accounts for 39% of data complexity along the PC1-cancer
axis. The PRAD-CES is populated by protein-coding (AMACR,
TP63, HPN) and RNA-genes (PCA3, ARLN1), validated/
predicted biomarkers (HOXC6, TDRD1, DLX1), and/or cancer
drivers (PCA3, ARLN1, PCAT-14). Of note, the PRAD-CES also
comprises six over-expressed LncRNAs without previous Pca
association, four of them potentially modulating driver’s
genes TMPRSS2, PRUNE2 and AMACR. Overall, our PCA
capture 57% of data complexity within PC1-3. Gene
Ontology enrichment and correlation analysis comprising
major clinical features (i.e., Gleason Score, AR Score,
TMPRSS2-ERG fusion and Tumor Cellularity) suggest that
PC2 and PC3 gene signatures may describe more aggressive
and inflammation-prone transitional forms of PRAD. Of
note, surfaced genes may entail novel prognostic
biomarkers and molecular alterations to intervene.
Particularly, our work uncovered RNA genes with appealing
implications on Pca biology and progression.

Keywords: Principal component analysis; RNA-seq; Prostate
cancer; Biomarkers; RNA genes

Introduction
Prostate cancer (Pca) is the second most common cancer in

men [1]. Multiple genetic and demographic factors contribute to
the incidence of Pca [2]. Prostate-Specific Antigen (PSA)
screening allows detection of nearly 90% of prostate cancers at
initial stages when their surgical removal is the preferred
medical intervention [3]. Of note, during their life-time, most of
these patients would never experience Pca, therefore the
disease is considered over-diagnosed and over-treated [4].

The clinical outcome of Pca is highly variable, and precise
prediction of disease’s course is not possible [5]. Major risk
stratification systems are based on clinical and pathological
parameters such as Gleason score, PSA levels, TNM system and
surgical margins [6]. However, the above risk stratification
systems fail to adequately predict outcome in many cases [7,8].
Thus, novel serum-, urinary-, and tissue-based biomarkers are
constantly tested and implemented [9]. Of note, for those
tumors spreading beyond the prostatic gland (i.e., local and/or
distant metastasis) the prognosis is more dismal, and effective
therapies are needed [10,11]. Renewed expectations are still
rooted into emerging and hopefully more tractable Pca
molecular alterations [12,13].

Comprehensible genome-wide analysis of primary Prostate
Adenocarcinoma (PRAD) revealed already known and novel
molecular lesions for 74% of all tumors [14]. The most common
alterations were fusions of androgen-regulated promoters with
ERG and other members of the E26 Transformation-Specific
(ETS) family of transcription factors. Particularly, the TMPRSS2-
ERG fusion is the most representative molecular lesion,
accounting for 46% of study cases. Pca also show varying
degrees of DNA copy-number alteration, whereas somatic point
mutations are relatively less common [15,16]. Despite this
detailed molecular taxonomy of PRAD, roughly 26% of primary
Pca of both, good and poor prognosis, are driven by unknown
molecular lesions.
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Principal Component Analysis (PCA) is an unsupervised 
analysis method providing information about major directions of 
data variability and structure, thus reducing the overall 
dimensionality of complex datasets to a few dominant 
components [17]. 

Based on global gene expression data, PCA usually reveals 
underlying population heterogeneity, including cell 
differentiation stages, malignant phenotypes and treatment 
induced changes, which can be linked to phenotypes and further 
characterized [18]. 

Biological meanings are usually captured by the first 3-4 
PCs, although further improvements on PCA revealed that 
higher dimensions may also entail biology information 
[19].

Recently, we used Principal Component Analysis (PCA) 
analysis of RNA-seq expression data to show that a relatively 
small number of “core genes” can segregate normal from 
neoplastic tissues in different tumor localizations [20]. 

Here, by using such PCA we analyze primary PRAD RNA-
seq data to uncover and characterize a novel PRAD-
Core Expression Signature (PRAD-CES) which may may 
“describe” at expression level Pca [21,22]. 

The PRAD-CES segregates tumor from normal samples along 
what we call the cancer axis (i.e., PC1), whereas top genes 
populating PC2 and PC3 might reflects a more aggressive 
and inflammation-prone transitional forms of PRAD. 

Overall, the list of surfaced genes may entail novel 
prognostic biomarkers and/or molecular alterations to 
intervene. Particularly appealing, was the identification of 
several RNA genes with potential implications on Pca 
biology and progression.

Materials and Methods

RNA-seq data
For PCA we take RNA-seq tissue expression data from the 

TCGA Prostate Adenocarcinoma project (TCGA-PRAD, Accessed 
in March 2019). 

The data is in the number of fragments per kilo base of gene 
length per mega-base of reads format (FPKM). The studied 
cases include 499 tumor samples and 52 normal samples. 
At Cbioportal such data belong to Prostate 
Adenocarcinoma (TCGA, Firehose Legacy) cohort.

 Two other data cohorts were used in particular 
analysis: Prostate Adenocarcinoma (TCGA, Cell 2015) 
and Prostate Adenocarcinoma (MSKCC, Cancer Cell 2010).

PCA analysis

Figure 1:  (A)  Un-normalized expression data and differential 
expression profiles in PRAD. Typical range of (un-normalized) 
expression values from one representative patient (log scale). 
The red dashed line denotes the expression threshold for 
statistical significance. Genes with expression below the 
threshold both in normal tissue and in tumor are mapped to 
differential expressions very near one. 

Figure 1A shows in a typical PRAD sample that the expression 
of more than 35000 genes is below 0.1. We shift the expression 
by 0.1 in such a way that, when computed the differential 
expressions, genes with not statistically significant expressions 
are ruled out of the analysis. Then, we take the mean geometric 
average over normal samples in order to define the reference 
expression for each gene, and normalize accordingly to obtain 
the differential expressions, ē=e/eref. Finally, we take the base 2 
logarithm, ê=Log2 (ē), to define the fold variation. Besides 
reducing the variance, the logarithm allows treating over- and 
sub-expression in a symmetrical way. The co-variance matrix is 
defined in terms of ê. We forced the reference for the PC 
analysis to be at the center of the cloud of normal samples, ê=0. 
This is what actually happens in a population, where most 
individuals are healthy and cancer situations are rare.

With these assumptions, the covariance matrix is written: 
σ2ij=Σ êi(s) êj(s)/(Nsamples-1), where the sum runs over the 
samples, s, and Nsamples is the total number of samples in the 
study. êi(s) is the fold variation of gene i in samples. The 
dimension of matrix σ2 is 60483, that is equals the number of 
genes in the data. By diagonalizing this matrix, we get the axes of 
maximal variance: The Principal Components (PCs). They are 
sorted in descending order of their contribution to the variance. 
As mentioned, PC1 captures 39% of the total data variance, PC2 
11%, PC3 7%, etc. These results suggest that we may achieve a 
reasonable description of the main biological characteristics of
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PRAD using only a small number of the eigenvalues and
eigenvectors of σ2. To this end, we diagonalize σ2 by means of a
Lanczos routine in Python language, from which we get the first
100 eigenvalues and their corresponding eigen-vectors.

Gene information and genome visualization
General gene information was collected from Gene cards

integrated data sources including but not limited to expression,
tissues-specificity, sub-cellular localization and diseases
association data [23]. Genome visualizations were done with
Ensemble release 100-April 2020, Genome assembly:
GRCh38.p13 (GCA_000001405.28) [24].

LncRNA databases
To identify any previous association among identified LncRNAs

and cancer, the following non-redundant databases were
reviewed: Lnc2Cancer 2.0: An updated database that provides
comprehensive experimentally supported associations between
lncRNAs and human cancers [25]. LncRNA disease 2.0: contains
experimentally and/or computationally supported data [26].
Cancer LncRNA Census (CLC): a compilation of 122 GENCODE
lncRNAs with causal roles in cancer phenotypes [27]. The
miRTarBase was used to uncover ceRNAs among selected
LncRNAs [28].

Enrichment analysis
The enrichment analysis was performed using the Enrich

platform and the following categories: Ontologies
(GO_Biological_Process_2018), Pathways (Reactome_2016) [29].

Cbioportal
Oncoprint visualizations for selected Genomic Profiles,

Alteration Frequency, and mutations representation were
obtained from Cbioportal.

Cancer driver repositories and driver prediction
platforms

To search for any previous cancer association of identified
genes the Cancer Gene Census and OncoKB databases were
reviewed [30,31]. The driver prediction platforms IntoGene and
ExInAtor were used to predict a potential driver role for protein-
coding and non-coding genes [32,33].

Pearson correlation
Correlations among selected Pca clinical features and the PCs

variables were performed using a Mathematica function
(Pearson Correlation Test). A normal distribution of the variables
is required.

Results

Data normalization surfaced a n age-independent
aberrant gene expression profile

In our analysis there are 52 samples of “normal” prostate 
tissues, 498 primary tumors samples, and one metastatic 
sample. RNA-seq data comprise expression values for 60483 
independent genes, roughly 35000 of them are not transcribed 
at significant levels in prostate samples shown in Figure 1A.

Considering sample availability, we dicotomized the RNAseq 
data from “normal” and “neoplastic” tissues into two arbitrary 
age cohorts, with the “old” threshold set at ≥ 62 years (age 
range: 42-78, median=62) (Figure S1). Thus, “normal patient 
samples were divided in “young” samples (n=28, NY) and “old” 
patient samples (n=24, NO); whereas primary tumors samples 
were divided in “young” tumor samples (n=249, TY) and “old” 
ones (n=250, TO). While such distribution seems arbitrary and 
dictated by data availability, only 1 out 4 new PRAD diagnostic 
cases occurs below 60 years, whereas the mean diagnosis age is 
66 years [34].

The normalization of expression values for each of the data 
cohorts TY and TO against NY group data indicates that the 
neoplastic transformation entails a similar and genome wide 
over and under-expression of genes, irrespective of the age of 
the patients included in the analyzed data cohort (i.e., TY vs. TO)
(Figures 1B and 1C).

Figure 1: (B, C) Un-normalized expression data and 
differential expression profiles in PRAD. (B) and around 1000 
genes with differential expression above 2 (up-regulated) (C). 
Notice also that the expression profiles overlap for the TY and 
TO groups, and apparently differ from the NO profile.

Overall, we found roughly 1000 genes with normalized 
expression values above 2 and about the same number of genes 
with normalized expression values below 0.5.

Principal component analysis unveils a core
expression signature

The eigenvectors of the covariance matrix defined the PCs 
axes: PC1, PC2, etc., and projection over them defines the new 
state variables. By definition, PC1 captures the highest fraction 
of the total variance in the sample set (i.e., PC1=39%), whereas 
the rest of components are sorted in descending order of their 
contribution to the variance 11% (PC2), 7% (PC3), 5% (PC4) and 
so on. Overall, the 8 first PCs comprised 74% of the data 
variance. Of note, 50% of data variance can be captured by the 
two major Principal Components (i.e., PC1 and PC2).
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The PCA reveals that a Core Expression Signature composed 
of 33 genes from PC1 (hereafter, PRAD-CES 33) can segregate 
primary neoplastic samples from normal prostatic tissues with 
roughly 4% and 8% of false positives and false negatives, 
respectively (Figures 2A-2C).

Figure 2: Principal Component Analysis (PCA) of RNAseq-
based expression data from PRAD patients. (A) The tumor 
samples (cloud mean=+91.3) fall apart the distribution of 
“normal” ones (cloud mean=0.0) along the PC1 axis defined here 
as the “cancer axis” (p-value=10^-65, Mann-Whitney test). (B) 
Selecting a PC1 value of 45 as a frontier, 2/52 (3.8%) of normal 
samples are false positives, whereas 38/499 (7.7%) deemed as 
false negatives. (B,C) The optimal number of “core” genes within 
the PC1 gene subset is selected according to the ratio of False 
Positives and the Location Test.

Beyond such 33 genes, the addition of subsequent genes only 
slightly improves the ratio of false positives and the segregation 
of neoplastic from normal samples along the PC1 axis.

The position along the PC1 axis of a sample is computed as 
x1=Σ êi v1i, where v1i are the components of the unitary vector 
along this axis. A bardcode-like representation of the amplitudes 
for such 33 genes is represented (Figure S2). The greatest value 
(i.e., over-expression) corresponds to a well know driver and 
biomarker gene in PRAD, the Prostate Cancer Associated 3 
(PCA3) antisense [35,36]. Otherwise, the most underexpressed 
genes within this PRAD-CES are the protein coding gene SEMG1 
[37]. Further bardcode like analysis of top-100 genes 
contributing to PC1 axis shown a similar profile. Detailed 
information about the 33 genes included in the core signature 
are described (Table S1).

Notice that a picture like Figure 2B is drawn by recomputing 
the positions of samples along PC1, the ratio of false positives, 
etc. by using only the first n genes, ordered according to the 
module of their amplitudes in vector v1.

Finally, the distribution of tumor samples according to PRAD-
CES on the PC1-PC2 plane was similar, irrespective of the age 
range (i.e., TY cloud median=87, TO cloud median=64). 
These results imply that not only the global normalized 
gene expression profile is similar among TY and TO in PRAD 
cases; rather, than a small number of core genes could 
become a molecular signature of the neoplastic state, 
irrespective of the age of the patient (i.e., PRAD-CES33).

Protein coding and RNA-genes compose the PRAD-CES33

The surfaced PRAD molecular signature its composed by 
protein coding (70%), as well as RNA-genes, including antiSense, 
pseudogene, and LncRNA (30%). The expression of the 
corresponding proteins was observed for 9/23 coding genes, 
whereas 6/10 RNA genes were detected in malignant prostate 
tissues. Of note, 20/23 (87%) protein coding genes have been 
previously associated to cancer, 18 
(78%) particularly to Pca. Otherwise, 3/10 RNA genes have 
been connected to Pca (33%)(Table S2).

PRAD-CES genes displayed low mutational burden with less 
than 5% of all samples having mutations (Figure S3). Otherwise, 
roughly 15% of primary PRAD samples harbor CNV on PRAD-CES 
genes, being predominant deep deletions. The overall alteration 
frequency of PRAD-CES genes is roughly half of Pca driver genes 
annotated in the CGC (i.e., 21% vs. 42% of cumulative alteration 
frequency, respectively).

Core expression signature includes emerging drivers
and biomarkers

A text-mining indicated at least 18 surfaced genes may play 
driver roles in PRAD. However, only TP63 is enlisted in the CGC 
database as Tier 1 driver for NSCLC, HNSCC and DLBCL cancers, 
but not Pca. None of the remaining 23 protein coding genes 
populate CGC or OncoKB databases, nor two orthogonal driver 
prediction tools (i.e. IntoGene and ExInAtor) found further 
drivers among PRAD-CES genes.

Otherwise, we search for non-coding genes that might 
be predicted as drivers by Ex-InAtor. PCA3 was the only 
significantly mutated LncRNA predicted as a driver, de-spite 
four of the six LncRNAs were analyzed (i.e., PCA3, 
AP006748.1, AP001610.2, ARLNC1) (data not shown).

To further investigate RNA genes previously associated with 
cancer, we search three LncRNA databases Lnc2Cancer, 
LncRNADisease and Cancer LncRNA Census. Three (i.e., ARLNC1, 
PCA3, PCAT-14), six (i.e., AC092535.4, AP001610.2, AP002498.1, 
AP006748.1, PCA3 and PCAT14), and one RNA gene (i.e., PCA3), 
respectively; were previously associated with cancer (Table 1). 
Of note, the PRAD driver TMPRSS2 was predicted as mRNA 
target for AP001610.2 and AP006748.1 LncRNAs according to 
LncRNADisease database.

Table 1: LncRNA included in PRAD-CES and their 
association with cancer according to indicated databases.

LncRN
A

Databa
se

Metho
d

Tumor
type*

Role mRNA
target(
s)

Refere
nce

ARLNC
1

Lnc2C
ancer
2.0a

RNA-
seq,
qPCR,
Norther
n blot

Prostat
e

Driverα CDYL2
β

298080
28

PCA3 Lnc2C
ancer
2.0a

qPCR,
Wester
n blot

Prostat
e and
others

Driver;

Biomar
ker

PRUN
E2

305694
56
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PCAT-1
4

Lnc2C
ancer
2.0a

RNA-
seq,
qPCR,
RNAi,
ISH

Prostat
e and
others

Driver;

Biomar
ker

IGLL1,
DRICH
1

275661
05
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AC092
535.4

LncRN
ADisea
seb

Predict
ed
lncRNA
-
diseas
e

Cervica
l and
others

? CTBP1
,
SPON2
,
RNF21
2

not
found

AP001
610.2

LncRN
ADisea
seb

Predict
ed
lncRNA
-
diseas
e

Cervica
l and
others

? TMPR
SS2,
MX1

not
found

AP002
498.1

LncRN
ADisea
seb

Predict
ed
lncRNA
-
diseas
e

Cervica
l and
others

? CAPN5
,
B3GNT
6,
ACER3

not
found

AP006
748.1

LncRN
ADisea
seb

Predict
ed
lncRNA
-
diseas
e

Cervica
l and
others

? TMPR
SS2

not
found

PCA3 LncRN
ADisea
seb

ncRNA
-
diseas
e
causalit
y

Prostat
e and
others

Driver;

Biomar
ker

PRUN
E2

277433
81;
265948
00

PCAT-1
4

LncRN
ADisea
seb

ncRNA
-
diseas
e
causalit
y

Prostat
e and
others

Driver;

Biomar
ker

IGLL1,
DRICH
1

274603
52;
275661
05

PCA3 Cancer
LncRN
A
Census
c

qPCR,
Wester
n blot

Prostat
e and
others

Driver;

Biomar
ker

PRUN
E2

277433
81;
265948
00

Note: a: Experimentally supported; b: Experimentally and/or computationally
supported; c: GENCODE lncRNAs with causal roles; *Top associated tumor; α
from text-mining; β Predicted using LncRNADiseaseb tool.

Finally, two others surfaced LncRNAs may impinge on Pca 
relevant genes according to a genomic inspection. The LncRNA 
AL359314.1 overlap with PCA3 and may reinforce the negative 
regulation of PCA3 over PRUNE2; whereas AC139783.1 is 
transcribed within the AMACR protein coding gene (Figures 3A 
and 3B).

Aberrant expression of PRAD-CES genes on

independent datasets
The expression of PRAD-CES genes were further analyzed on 

three independent prostate cancers studies [38-40]. Three 
putative emerging drivers in PRAD were consistently de-
regulated across the analyzed datasets. AMACR, SIM2 and 
GPX2 protein coding genes were significantly up-regulated 
(AMACR, SIM2) or down-regulated (GPX2) in both primary and 
metastatic samples from lymph node and multiple sites 
(Figures 4A-4C, Table S3).

Figure 4: Box plots of z-scores of Benign vs. malignant tissues 
for AMACR (A), SIM2 (B) and GPX2 (C) genes. For statistics 
analysis a Kruskal-Wallis test with Bonferroni correction for 
multiple tests was conducted. Data taken from (Taylor et al., 
2010) [40].

Overall, 14 of 33 PRAD-CES genes were included in the 
Lapointe dataset (Figure S4). Whereas, the expression of 11 of 
them were consistently up or down regulated in this dataset, 
three showed no statistical differences (i.e., COMP, SEMG1 and 
SEMG2). On the other hand, in the Taylor dataset 17 of 33 
PRAD-CES genes were detected (Figure S5). The expression of 
11 genes were found consistently up- or down-regulated in 
primary tumors vs. benign tissues in agreement with our 
RNAseq-data, whereas no significant differences were found for 
6 genes (i.e., GSTM1, SERPINA5, COMP, SLC39A2, SEMG1 and 
SEMG2). Finally, in the Ross-Adams dataset 19 of the 33 
PRAD-CES genes were detected. The expression of 17 genes 
were found consistently up- or down-regulated in primary 
tumors vs. benign tissues, whereas no significant differences 
were found for 2 genes (i.e., SEMG1 and SEMG2) (Figure S6).

PCs: Enriched biological processes and correlation
with major clinical features

To seek for biological meanings beyond that of the individual 
genes populating the PCs, the top 33 genes from PC1, PC2 and 
PC3 were submitted to enrichment analysis to identify 
associated Biological Process. Of note, the top 33 genes 
populated PC1 (i.e., PRAD-CES) were mainly associated with 
tumor-intrinsic processes (GO:1900003, GO:0010950, GO: 
0007283, GO:0048232; p<0.01); whereas the Biological Process 
related to PC2 (GO:0006958, 
GO:0002455, GO:2000257, GO: 0030449; p<0.001) and PC3 
(GO:0050864, GO:0099024, GO: 0051251, GO:0006911; 
p<0.001) suggested involvement of the Innate and adaptive 
Immune System (Figures 5A-5C, Data S1).
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Figure 5: Enrichment analysis for Biological Process using the 
tool Enrich. PRAD_CES composite genes from PC1 (A) and top 33 
genes from PC2 (B) and PC3 (C) were included in the analysis. 
Statistical significance is in accordance with color from light 
(highly significant) to dark tones (less significant).

Overall, the PRAD-CES genes (PC1) participate in more diverse 
BP and pathways compared to genes populated PC2 and PC3 
(Data S2). Otherwise, PC2 and PC3 populated genes seemed 
mainly involved in the complement activation, humoral immune 
response, regulation of B cell activation, phagocytosis, 
engulfment and regulation of acute inflammatory response.

To analyze the underlying distribution of major PRAD clinical 
features across PCs 1-3, a correlation analysis between each PC 
and the Gleason-Score, AR-Score, TMPRSS2-ERG and tumor 
cellularity were performed (Figures 6A-6D, Table 2) .

Figure 6: Correlation between PC1 and PC3 and major clinical 
features of PRAD using the data cohort Prostate 
Adenocarcinoma (TCGA, Cell 2015), comprising 333 primary 
tumors. Major features include Gleason-Score (A), AR-Score 
(B,D), TMPRSS2-ERG and tumor cellularity (C) (see Table 2 for 
details).

Table 2: Correlations among PCs and selected clinical features 
of PRAD (TCGA, Cell 2015). A Pearson correlation test was 
performed.

Clinical
features

PC1 PC2 PC3

Gleason score 0.26 -0.16 0.04

TMPRSS2-ERG 0.02 -0.18 0.24

AR score 0.23 0.32 0.45

Our analysis revealed that PC1 values shown a weak-yet 
positive correlation with Gleason (R<0.30, p=6.0E-06), and AR 
Score (R<0.30, p=5.0E-5); whereas a medium-strength positive 
association with Tumor cellularity (R=0.37, p=8.0E-11) was seen. 
Of note, independent correlations among clinical features in this 
dataset indicated that the Gleason score weakly correlates with 
Cellularity (R=0.26, p=8.0E-6) and TMPRSS2-ERG fusion anti-
correlates with AR Score (R=-0.24, p=4.0E-5) (Data S3). 
Therefore, the observed correlation between PC1 values and the 
above-mentioned clinical features may reflect the underlying 
PRAD biology which is in line with the fact that PC1 may explain 
up to 39% of data complexity, being a more “general” expression 
signature.

Concerning PC2, we observed an anti-correlation among 
TMPRSS2-ERG and AR Score which goes along the underlying 
PRAD biology; however, in this PC the Gleason Score anti-
correlated with Tumor Cellularity. Finally, the genes included in 
PC3 showed positive correlations with TMPRSS2-ERG, AR Score 
and Tumor Cellularity.

Discussion
Here, we use Principal Component Analysis (PCA) to surface a 

gene expression sig-nature which may “describe” primary PRAD, 
providing new putative biomarkers and/or molecular targets to 
intervene. Such dimensionality reduction algorithm clearly 
segregates tumor from normal samples, with eight PCs capturing 
roughly 3/4 of data complexity. The RNA-seq input data was 
obtained from the Prostate Adenocarcinoma cohort 
TCGA_Firehose Legacy, which comprised a significant number of 
tumor and normal samples, the ultimate required to perform 
our custom-made normalization. Furthermore, considering that 
PCA lose resolution on highly heterogeneous and pooled data, 
we selected only this Pca data cohort to perform our PCA.

Our custom-made normalization revealed a long-tail 
distribution of expression values which might reflect global 
deregulation events associated with aging and/or malignant 
transformation [41]. Since we used “Normal Young” data as 
reference, the obtained pattern may suggest that neoplastic 
transformation over-impose on already age-adjusted global 
expression profile (i.e., similar TY and TO distribution). However, 
this notion needs to be verified by using larger and better 
dichotomized age-based patient cohorts. Of note, the observed 
long-tail distribution is independent of the type of expression 
data (i.e. RNA-seq), since similar global gene-expression patterns 
emerged after analyzing micro-array data using our 
normalization procedure (data not shown).

The PCA allow us to identify a Core-Expression Signature 
(PRAD-CES) composed of 33 genes which accounts for 39% of 
data variance along what we call the cancer axis (PC1). The 
biological meaning of PC2 and PC3 seems more elusive, 
accounting for an additional 18% of variability. The PRAD-CES 
includes validated, emerging and putative PRAD drivers and/or 
biomarkers. Although only one validated pro-tein-coding driver 
was found (i.e., TP63), three RNA genes with causative roles
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were surfaced: ARLNC1, PCA3, and PCAT-14 [42-44]. Otherwise,
six protein coding genes awaits further validation concerning
PRAD driver roles: OR51E2, HPN, AMACR, DLX1, HOXC6 and
WFDC2 [45-50]. Concerning potential or validated biomarkers,
the PRAD-CES list contains 15 RNA-or protein-coding genes with
such a role. Among them HOXC6, TDRD1, and DLX1 have been
already proposed to identify patients with aggressive prostate
cancer [51]. TDRD1 might also play an important role in prostate
cancer development, and as a cancer/testis antigen, a potential
therapeutic target for cancer immunotherapy [52].

Of note, cross-validation of PRAD-CES genes using
independent data cohorts, indicated that most of these genes
were consistently deregulated in primary PRAD, with notable
exceptions on comp, semg1 and semg2 genes. Otherwise, the
expression of 14 PRAD-CES genes could not be verified in all
datasets. Overall, the most consistent genes among those
detected across all analyzed data were OR51E2, SIM2, HPN,
SLC45A2, TDRD1, PCA3, DLX1, AMACR, WFDC2, and HOXC6.

On the other hand, our PCA surfaced nine over-expressed
RNA genes, six of them lacking previous association with Pca.
Particularly, four LncRNAs could target PRAD driver’s genes
TMPRSS2, PRUNE2 and AMACR. One interesting finding was the
genome proximity/overlap among PRAD-CES over-expressed
genes AC139783.1, AMACR and SLC45A2 on Chromosome 5.
SLC45A2-AMACR was reported as a novel fusion protein which is
associated with progressive Pca disease [53]. Otherwise, among
several miRNAs which may down-regulate AMACR expression in
Pca, the potential sponging of hsa-miR-26a-5p by the surfaced
AC139783.1, needs to be ad-dressed. AMACR over-expression
have been associated with Pca evolution towards hormone-
independency, whereas AMACR inhibition seems a feasible
strategy to treat hormone-refractory prostate cancer patients.
LncRNA over-expression in Pca has been related with disease
progression, used as prognostic factor, or proposed as
therapeutic targets [54-56].

The most frequent molecular abnormalities in PRAD involved
gene-fusions, copy-number alterations and epigenetic
deregulation. As a matter of facts, the mutational burden
observed in surfaced PRAD-CES genes was low, suggesting that
expression levels and not co-existing mutations determine the
PCA-based segregation of tumor from normal samples.
Furthermore, less than 3% of PRAD samples included in our
study displayed CNV, thus suggesting that most of the observed
gene expression deregulation arose from epigenetic and/or
other transcription-based mechanism.

Finally, we selected four Pca molecular/clinical features to
correlate with PCs 1-3. The first, Gleason score, remains as a
cornerstone pathological criteria for risk-stratification and
disease prognosis [57]. Furthermore, primary prostate cancer is
androgen dependent, and androgen-mediated signaling is
crucial in prostate cancer pathogenesis, driving the creation and
over-expression of most ETS fusion genes [58,59]. Among such
ETS fusion genes, TMPRSS2-ERG fusion accounts for 46% of
cases. The fourth clinical feature, i.e. tumor cellularity, was used
here as a proxy for non-prostatic yet-relevant infiltrating
populations [60]. The observed correlations indicated PC1
reflects the underlying primary PRAD biology with positive

correlation among Gleason Score and Tumor Cellularity, as well
as among this variable and AR Score. Otherwise, genes
comprising PC2 and PC3 might reveal a transition towards a
more aggressive and inflammation-prone phenotype, with a
mixture of tumor epithelial cells and infiltrating immune cells
[61,62]. This notion seems also supported by a weaker
correlation of PC2 and PC3 genes with tumor cellularity, but also
by the increasingly positive correlation among genes populating
PCs 1-3 and the AR Score (i.e., from 0.23 to 0.45). Of note, only
PC3 genes positively correlated with TMPRSS2-ERG fusion.
Altogether, an intriguing possibility is whether PC3-populating
genes may describe an inherent fraction of highly infiltrated
tumor cells endowed to metastasize [63-65].

Conclusion
Overall, our study is limited by data availability/structure and

biopsy bias as any global transcriptome inquire. Primary prostate
tumors are multi-focal and molecularly heterogeneous; thus, the
surfaced gene expression signature may “described” only the
sampled site, which also contains different cells from the tumor
micro-environment. However, our PCA indeed uncover relevant
PRAD genes found dispersed across several studies, providing
new putative biomarkers and/or drivers. In this sense, the
inclusion of PCA3 within our PRAD-CES seems encouraging since
this LncRNA is well recognized as causative, prostate-specific
and feasible biomarker which is secreted to an easy-to-inquire
biological fluids. Finally, as therapeutic options for poorly
tractable Pca are limited, the evaluation of putative novel
molecular targets populating PRAD-CES seems appealing.
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