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Introduction
The loss-of-function mutation in the RB tumor suppressor gene 
at tumor initiation occurs in surprisingly few types of cancer. 
The inactivation of the RB product is often found during the 
progression of common types of cancers including prostate, 
breast, bladder, and esophageal cancers [1]. Most canonical 
function of pRB is to control cell proliferation that is achieved 
by preventing inappropriate entry of the cell into the cell cycle. 
This was experimentally confirmed by cell cycle re-entry upon RB 
inactivation in several tissues [2-4]. 

In vivo analyses of genetically engineered mice and in vitro 
experiments contributed to determining many of the canonical 
functions of pRB in cell cycle control and differentiation. During 
embryonic hematopoiesis, the loss of RB in mouse embryos results 
in inefficient enucleation and incomplete terminal differentiation 
of erythroid cells [5,6]. During skeletal muscle development, 
pRB is required for the cells to properly exit the cell cycle and 
to complete differentiation [7]. A myogenic transcription factor, 
MyoD, activates expression of pRB and Cdkn1a (p21) to enforce 
cells to exit the cell cycle [8]. pRB is also required for reorganization 
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of the lamin speckles during the myogenic process [9]. In the 
intestine of mice, when RB is conditionally deleted, differentiation 
markers showed abnormal patterns, and proliferative crypt cells 
exhibited enhanced proliferation [10,11]. In the lens, the loss of 
RB altered the expression of genes promoting differentiation, 
including β- and γ-crystallines [12]. These deficiencies in 
differentiation following pRB inactivation seem at least partially 
due to a defect in exiting the cell cycle, which is a critical step 
for most differentiation processes [1]. In addition, pRB controls 
the pluripotency of cells, independent of the cell cycle [13,14].  
Therefore, pRB is not only a cell cycle regulator, but also a key 
factor that controls cellular dedifferentiation and transformation. 
pRB is also implicated in numerous varieties of biological events 
such as cell death, DNA damage response, cellular senescence, 
genomic instability, cellular metabolism, inflammation, and 
angiogenesis [15-19].

In this review, in as much as space allows, we describe the 
molecular bases for the pleiotropic functions of pRB and its family 
members p107 and p130, which involve upstream signaling, 
effectors, and context-dependent targeted genes. 
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Regulation of G1-S Transition by pRB 
pRB has domain structures named pocket A, B, and C [20]. These 
domains individually or in combination contribute to the physical 
binding of many factors (effectors) involved in cell proliferation, 
transcriptional regulation, chromatin modification, signal 
transduction, apoptosis, etc. Therefore, canonically, pRB has 
been called a pocket protein. On the other hand, the reason for 
this gene being called an adaptor protein is that pRB undergoes 
various post-translational modifications by different types of 
signals and this process alters its binding affinity to effectors [17].

The most common post-translational modification on pRB that 
alters its functions is phosphorylation by kinase complexes 
consisting of CDK4 or CDK6 and cyclin D, which occurs in late 
G1 phase to early S phase (G1/S transition), and the subsequent 
release of E2F transcription factors promotes progression to the 
S phase [21]. The E2F family proteins are classified into activators 
including E2F1, E2F2, and E2F3, and into repressors including E2F4 
and E2F5. E2F6, E2F7, and E2F8 have been additionally identified, 
and currently being analyzed. It is also possible that E2F4 and 
E2F5 activate gene transcription under certain conditions [22]. 
Especially, E2F4 may transactivate several genes whose products 
are involved in the G2/M phase [23-25]. During the G1 phase, 
pRB forms a transcriptional repressive complex with histone 
deacetylase (HDAC) and the nucleosome remodeling complex 
hSWI/SNF. This machinery primarily represses the expression of 
cyclin E and A genes. Phosphorylation of pRB by CDK4/cyclin D 
allows HDAC to dissociate from the complex, relieving repression 
of cyclin E and thereby promoting cell cycle entry into the S 
phase. However, the phosphorylated pRB and hSWI/SNF complex 
persists on the promoter of genes encoding cyclin A and CDC2, 
inhibiting cell cycle exit from the S phase [26]. These processes 
explain the sequential expression of cyclin E and A during the cell 
cycle.

There are 13 amino acid residues in the pRB protein that 
are possibly phosphorylated by CDK4 or CDK6 [27]. In these 
phosphorylation sites, the 608th serine residue (S608) that resides 
between pocket A and B determines the binding affinity to the 
transactivation domain of E2F1, E2F2, and E2F3. These factors 
transactivate genes implicated in cell cycle progression and 
nucleotide synthesis such as CDC6, cyclin E, replication protein 
C, DNA ligase, and DNA topoisomerase [23,28-30]. Cell cycle and 
bone development defects in RB-deficient mouse embryos were 
suppressed by the simultaneous deletion of E2F1 [31]. In addition, 
numerous reports have indicated that E2Fs play a key role in 
mediating pRB function to regulate cell cycle and differentiation.

Besides the E2F-mediated transcriptional control, pRB 
has alternative mediators to regulate DNA replication. 
Hypophosphorylated pRB specifically binds to the largest subunit 
of the origin recognition complex (Orc1); this interaction competes 
with E2F1 on binding to pRB (Figure 1). During the transition from 
the G1 phase to the S phase, E2F1 out-competes Orc1 from pRB 
at replication origins [32]. The functional relationship with Orc1 
represents one of the E2F-independent functions of pRB.

RB+/- mice developed pituitary and thyroid tumors as a 
consequence of biallelic loss of RB in somites. Simultaneous 

deletion of E2F1 significantly suppressed thyroid tumorigenesis 
[33]. In contrast, deletion of E2F3 accelerated malignant 
progression of RB-deficient thyroid tumor [34]. Interestingly, 
RBD326V/+ mice develop pituitary but not thyroid tumors. This 
observation is in line with the result of an in vitro binding assay 
indicating that mutated pRBD326V could bind to E2F1 but not to 
E2F2/3 [35]. Thus, the relationships between pRB and each of E2F 
family members are functionally distinct. 

On the other hand, the introduction of the RB D750F/D750F 
mutation, which is able to inhibit E2F transactivation activity but 
unable to interact with LxCxE-motif proteins, including HDACs, 
heterochromatin protein 1 (HP1),, histone methyltransferase 
Suv39h1, and CtBP-interacting protein, caused cell cycle arrest 
upon mitogen deprivation or cell-cell contact, but did not cause 
cell cycle arrest upon RasV12 introduction or irradiation [36]. 
This result supports the argument that pRB-binding partners 
determine cell behaviors that differ depending on cellular context. 

Regulation of Mitosis by pRB 
In addition to phosphorylation, dephosphorylation of pRB is 
crucial for cell cycle control, especially during mitosis (Figure 1) 
[37]. Upon exiting mitosis, pRB is dephosphorylated by protein 
phosphatase 1 (PP1) [38]. In fact, direct binding between PP1 
catalytic subunit (PP1c) and pRB has been observed during 
mitosis [39]. Before initiating pRB phosphorylation, CDK/cyclin 
complexes out-competes PP1 [40]. Moreover, PP1 nuclear 
targeting subunit (PNUTS) specifically inhibits the activity of PP1 
to dephosphorylate pRB [41,42].

pRB is involved in checkpoints and maintenance of mitosis as well 
as in the transition from the G1 phase to the S phase. Chromosomal 
instability accompanied by abnormal spindle formation and 
impaired cohesion were also observed in pRB-deficient cells 
[43,44]. The expression of Mad2, a component of the mitotic 
checkpoint, is induced by E2Fs released from pRB [45]. Mad2 
ensures proper progression to anaphase, as it blocks anaphase-
promoting complex/cyclosome (APC/C). An aberrant expression 
of Mad2 caused by pRB defects may generate a hyperactive 
response to spindle checkpoint, causing an abnormal order of 
mitotic events and low accuracy of chromosomal segregation. 
Persistent inactivation of the APC/C by excess amounts of Mad2 
may delay the degradation of securin and cyclin B. Cdc20 protein, 
which is an activator of APC/C, functions as a co-transactivator 
of the UBCH10 gene, which encodes the E2 ubiquitin carrier 
protein [46]. Cdc20 interacts with the E2F1-DP1 complex at the 
promoter region of UBCH10 to stimulate its transcription, and 
pRB represses this transactivation [47]. pRB inactivation leads 
to deregulation of UBCH10 expression, which may cause lower 
accuracy of chromosomal segregation (Figure 2).  Moreover, 
pRB directly binds to the nuclear mitotic protein, NuMa, which 
organizes the mitotic spindle [48]. Since this binding occurs 
during the transition from interphase to prophase, it may control 
timing of the spindle formation or prevent mitotic segregation 
caused by premature chromosomal arrangement. 

Moreover, pRB controls genomic stability. Malignant tumor 
progression is caused by pRB-deficiency, which induces 
aneuploidy and genomic instability [49]. It is also observed in 
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cultured cell lines upon pRB inactivation [45,50-52]. Furthermore, 
hepatitis C virus (HCV) infection, which often causes polyploidy, 
decreased the effects of mitotic checkpoints due to the reduction 
of RB transcription and the induction of E2F1 and Mad2 [53]. 
Loss of p53 seems to render the cells resistant to cell cycle 
arrest, following chromosomal mis-segregation induced by pRB 
deficiency. Therefore, simultaneous inactivation of pRB and 
p53 results in high levels of chromosomal instability [54]. The 
functional synergy between pRB and p53 will be discussed again 
later. 

Post-translational Modification of pRB 
The pRB-E2F1 complex plays a pivotal role in regulating apoptosis, 
in a manner distinct from that for transcriptional control 
during the cell cycle [55-58], and  for enhancing resistance to 
phosphorylation by CDK [59,60]. Specific phosphorylation of 
human E2F1 at S364 that occurs in response to DNA damage-
induced double strand breakages enhances the formation of the 
pRB-E2F1 complex, even when pRB is hyperphosphorylated; this 
process subsequently transactivates a number of proapoptotic 
genes [55].

Acetylation of pRB by p300 is required for cell cycle exit during 

skeletal myogenesis in mice [61]. In addition, acetylation of pRB 
at K873 and K874 in the C-terminus region of pRB, where E2F1 
binds to, occurs in response to DNA damage, which releases E2F1 
from pRB [62]. 

Furthermore, methylation at K810 in pRB by the Set7/9 
methyltransferase, which prevents subsequent phosphorylation of 
pRB, is required for efficient cell cycle arrest [63]. This methylation 
inhibits the phosphorylation of serine residues S807 and S811 in 
the vicinity. Phosphorylation at these serine residues by 5’-AMP-
activated protein kinase (AMPK) is required for proliferation of 
neural stem and progenitor cells (NPC) in the mouse brain [64]. In 
some lineage of cells including NPC, metabolic stimuli to control 
cell proliferation are mediated through the AMPK-pRB pathway 
rather than through the CDK-pRB pathway.  On the other hand, a 
putative oncoprotein, SET and MYND domain-containing protein 
2 (SMYD2), whose overexpression is often observed in esophageal 
squamous cell carcinoma cells, also methylates K810 in pRB, and 
the methylation by SMYD2 facilitates phosphorylation at S807 
and S811 by CDK4 [65]. The growth suppression of cancer cells 
by SMYD2 knock-down is possibly due to the altered methylation 
in pRB.

In endothelial cells exposed to oxidative stress, rapid 

Figure 1 pRB functions in cell cycle control.  Phosphorylation of pRB by CDKs/cyclins and subsequent release of E2Fs 
are essential for the initiation of S phase.  Then cyclin E, which is induced by E2Fs, activates CDK2 and further 
phosphorylates pRB during the S phase. Hypophosphorylated pRB binds to Orc1, thereby inhibiting the 
initiation of replication; this binding is competitive to the pRB-E2F association. During mitosis, PP1 binds to and 
dephosphorylates pRB
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dephosphorylation of the pRB family of proteins was observed, 
which appeared to depend on protein phosphatase 2A (PP2A); 
this enhances pRB-E2Fs association [66]. UV stress caused the 
rapid dephosphorylation of p107 by PP2A holoenzymes [67,68]. 
However, growth arrest by FGF or all-trans retinoic acid was 
mediated by dephosphorylation of p107 or p130 in a PP2A-
dependent manner [69-71].  Dephosphorylation at two residues, 
S1080 and T1097, adjacent to the nuclear localization signal (NLS) 
in p130 induced its translocation to the nucleus due to increased 
binding affinity of importins to this NLS [72]. Moreover, hypoxia 
(1% oxygen) and oxidative stress caused dephosphorylation of the 
pRB family proteins by PP1 and PP2A, which reduces the efficiency 
of DNA replication [66]. Thus, the phosphorylation status of 
pRB and its family members are dynamically controlled by the 
equilibrium between CDKs and PP1 or PP2A throughout the cell 
cycle. A recent study using chemotherapeutic reagents suggested 
that PP1 but not PP2A is directly involved in dephosphorylation 
of pRB. PP2A might affect the phosphorylation status of PP1c 
and/or its regulatory proteins [73]. These findings suggest that 
the effects of post-translational modifications in pRB and other 
pocket proteins differ depending on cellular context.

Epigenetic Regulation by pRB 
As aforementioned, pRB controls its targeted gene transcription 
mainly via E2Fs. Genes targeted by E2Fs include those promote 
S phase, chromatin assembly, condensation, segregation, and 
spindle formation [25], but a considerable percentage of those 
genes might be regulated through pRB function to modulate 
the epigenetic status of the genome [74]. The pRB-E2F complex 
suppresses gene transcription at least partly by recruiting 
HDAC1 and 2 [75]. Histone H4 acetylation status on E2F targeted 
promoters varies in a cell cycle-dependent manner [75-77]. pRB 
interacts with the histone methyltransferases and HP1 [78,79]. 
Loss of pRB resulted in disappearance of trimethylated K20 
histone H4 from the heterochromatin domain [80]. As described 
above, pRB interacts with HDAC and the hSWI/SNF complex to 
repress expression of cyclin E and A during the G1 phase.

In addition, pRB controls the methylation status of the genome, 
by binding to DNA methyltranferase 1 (DNMT1). Through this 
interaction, pRB reduces DNA methylation levels in the genome 
[81], while DNMT1 cooperates with pRB-E2Fs to suppress 
transcription via HDAC1 [82]. 

There are several alternative pathways where pRB controls 

Figure 2 pRB functions in controlling mitotic checkpoints.  The transactivation of MAD2 and UBCH10 genes by E2F is 
repressed by pRB binding.  Mad2 protein, in response to spindle disassociation, inhibits Cdc20, inactivating 
APC/C. UBCH10 protein is an E2 enzyme that degrades securin, which prevents the initiation of chromosomal 
segregation by separase. Loss of pRB may cause over-production of these regulatory proteins that play critical 
roles in mitosis.
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DNMT1 activity. Attenuation of pRB expression stimulates 
ATM expression depending on E2F, whereas pRB appeared 
to cooperate with ATM to regulate the stability of DNMT1 by 
controlling its complex formation with a specific E3 ligase UHRF1 
[83]. On the other hand, through direct binding at the AP-1 site, 
pRB and c-JUN upregulate the DNMT1 promoter in early passage 
mesenchymal stromal cells (MSCs) [84,85]. In non-MSCs, pRB 
was found to bind to the E2F1 binding site but not to the AP-1 
site in the DNMT1 promoter [84], implicating that the functional 
interactions between pRB and DNMT1 might be critical for 
epigenetic regulation that determines lineage commitment and 
the differentiation status of cells.

pRB Functions To Control Cellular Me-
tabolism
pRB is deeply implicated in the regulation of cellular metabolism 
[18].  This would be highly helpful to adjust the metabolic status 
to demands to increase biomass upon cell proliferation. Cancer 
cells are most remarkably characterized by altered cellular 
metabolism. Most cancer cells achieve aerobic glycolysis that is 
inefficient to generate ATP, while normally differentiated cells 
rely much on oxidative phosphorylation to generate energy. This 
phenomenon is called the Warburg’s effect.

The role of pRB in cancer metabolism is being extensively 
studied recently [18,86].  The pRB-E2F pathway regulates cellular 
proliferation in response to glucose stimulation. E2F1 induces the 
expression of Kir6.2, which constitutes the ATP sensitive potassium 
channel, thereby regulates insulin release from pancreatic-cells. 
Meanwhile, CDK4 is activated by the insulin signal in response to 
glucose stimulation, resulting in activation of E2F1 [87].

pRB is implicated in controlling many of the genes involved in 
fatty acid and cholesterol biosynthesis. The promoters of these 
genes possess sterol regulatory elements (SRE), E2F-binding 
consensus sequences, or both. RB inactivation causes an E2F-
dependent induction of farnesyl diphosphate synthase, several 
prenyltransferases, and transcriptional activator sterol regulatory 
element-binding proteins (SREBPs), thus the isoprenylation 
status of proteins including N-Ras is affected by the presence of 
pRB [88].

While human cancers without functional pRB exhibits an 
increased glutamine-uptake, triple knock-out of the RB family 
of genes in mouse embryonic fibroblasts (MEFs) also increased 
glutamine consumption, due to upregulation of the glutamine 
transporter ASCT2 [89]. Loss of RB family members resulted in 
higher glutamine utilization in the TCA cycle and glutathione 
accumulation. Moreover, these cells became more dependent on 
glutaminolysis [89]. Thus, pRB family members may play a key 
role in rewiring glutamine metabolism and glutathione synthesis 
in tumor cells.

pRB and E2F1 can also regulate oxidative metabolism by 
modulating the expression of several genes involved in 
mitochondrial biogenesis [90,91]. During differentiation of white 
and brown adipocytes that takes place depending on the status 
of pRB, mitochondrial gene expression pattern and number are 
altered. The pRB-E2F1 complex binds to the promoters of many 

of the genes implicated in oxidative metabolism in brown adipose 
tissue and muscle. When exposed to cold or fasting conditions, 
pRB undergoes higher rates of phosphorylation, stimulating 
oxidative metabolism [90,92]. Thus, pRB detects changes in the 
extracellular space and directs cell metabolism in response.

pRB in tumor progression
Mice carrying a point mutation in RB that impedes the ability to 
interact with the transactivation domain of E2Fs showed relatively 
normal development and did not develop cancer throughout 
their lives [60]. Interestingly, MEFs with a pRB mutation that 
specifically disrupts interactions with E2Fs, were able to arrest the 
cell cycle upon serum starvation at an efficiency similar to that of 
wild type MEFs, but their capability of progressing the cell cycle 
upon serum stimulation was impaired to a level similar to that of 
RB knock-out cells [60]. In short, cell cycle arrest can be achieved 
by pRB without the help of E2Fs. These results suggest that the 
pRB function in transcriptional control via the interaction with 
E2Fs is distinguished from the pRB function in tumor suppression. 
Therefore, pRB deficiency gives rise to a variety of consequences 
due to its pleiotropic functions that differ depending on 
cellular types and stages of tumor development. For example, 
heterozygosity of retinoblastoma gene RB+/- tends to arise thyroid 
C cell tumors, but the RB+/- Skp2-/- mice did not appear the tumor 
in thyroid glands.  Elimination of p27 phosphorylation, which 
avoid ubiquitination by SCFskp2, showed the same effect given by 
the Skp2-null background [93]. This suggests that downregulation 
of p27 by ubiquitination under the SCFSKP2 system supported 
aberrant proliferation in RB-deficient cells.

RB mutations in early stage tumorigenesis are detected in certain 
types of malignancies such as retinoblastoma, osteosarcoma, and 
small cell lung cancers. In the majority of cancers, pRB inactivation 
is more prevalent during the later stage of tumor development. 
pRB is uniquely indispensable to prevent precursor proliferation 
of cones in the retina, implicating absolute requirement of RB 
dysfunction for the initiation of retinoblastoma [94]. On the 
other hand, pRB is typically intact at early stages of prostate 
carcinogenesis. The inactivation of pRB at later stages allows E2F1 
to activate the expression of androgen receptor, which is essential 
for tumor progression and metastasis [95].  Furthermore, the pRB 
downregulation reduces the expression level of E-cadherin; this 
gives rise to a mesenchymal-like phenotype in breast cancer cells 
thereby promotes invasion and metastasis [96].

Functional Synergy between pRB and 
p53
pRB and p53 are the targets for the proteins produced by 
oncogenic DNA viruses. For example, the E7 protein of human 
papillomaviruses (HPVs) binds to pocket proteins, pRB, p107, 
and p130, synergistically inhibiting their functions [97]. HPV E7 
also binds to and activates E2F1; this blocks E2F6 function to 
counteract E2F1 function [98]. On the other hand, the E6 protein 
of HPVs stimulates ubiquitination of p53 [99]. These findings 
indicate that the dual inhibition of pRB and p53 by HPV proteins 
promotes cancer initiation.

Apoptosis and cellular senescence are crucial processes to 
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avoid malignant progression, and are mostly controlled by p53, 
pRB in cooperation with other tumor suppressors. p53 and pRB 
cooperate in multiple steps in these mechanisms, suggesting why 
double mutation of these genes is often detected in cancers. 
Loss of pRB function can lead to apoptosis mediated by E2F1 
and then by ARF, an upstream regulator of p53 [100,101]. Thus, 
pRB functions in a considerably different way in the absence 
of p53. Knockdown of either one of p53, p21, or pRB restored 
proliferative properties in cells, which were arrested by loss of 
the three ras loci, H-, N- and K-ras, implicating pRB-p53-p21 
function in the identical process [102,103]. However, a recent 
study demonstrated that a double inactivation of pRB and p53 
resulted in an undifferentiated status in MEFs without inducing 
carcinogenesis [104]. This phenomenon was not fully achieved 
in cells deficient of either one of pRB or p53, indicating that their 
functions acted in distinct pathways. 

A considerable portion of pRB proteins localize to the 
mitochondria and play pivotal roles in regulating mitochondrial 
apoptosis in a transcription-independent manner [105,106]. 
Surprisingly, this regulation is attained via the direct interaction 
of pRB with one of the Bcl2 protein family members, Bax [106]. 
Bax increases permeability of the mitochondrial outer membrane 
(MOMP), releasing proapoptotic factors such as cytochrome c 
and leading to activation of effector caspases [107]. The status of 
mitochondrial pRB was affected by a wide variety of proapoptotic 
signals, which is one of the non-canonical functions of pRB 
in tumor suppression [106]. Phosphorylation of pRB at S807 
appeared to be critical for the interaction with Bax [108]. Hence, 
dephosphorylation of pRB results in its dissociation from Bax. 
However, knockdown of PNUTS, which would activate PP1 that 
dephosporylates S807 in pRB, induced apoptosis [109-111]. It 
is thus unclear whether release of Bax from pRB is required for 
mitochondrial apoptosis. On the other hand, dephosphorylation 
of pRB at T821 that occurs in response to cellular stress, such as 
UV or CDK inhibitors, stimulated apoptosis [112,113]. Whether 
the phosphorylation status of pRB at T821 affects the binding 
between pRB and Bax is not yet clarified.

In mitochondrion, p53 also directly interacts with anti-apoptotic 
proteins such as Bcl2 or Bcl-XL. This interaction results in 
activation of proapoptotic Bax and Bak proteins [114]. The 
overlapped pRB and p53 functions in controlling apoptosis would 
explain the necessity for inactivation of pathways related to both 
tumor suppressors for tumorigenicity [115,116].  Interestingly, 
the non-cell autonomous function that suppresses apoptosis 
in RB deficient cells occurred after p53 induction in neurons of 
chimeric mice [117]. It may caused by some survival signals or 
Bax inhibition from neighbor cells. Moreover, a study using tetra-
ploidy technique showed an extraembyonic function of the RB 
gene.  RB-/- embryos, when supplied with wild-type placenta, did 
not show abnormal development in the central nervous system 
(CNS), and survived until birth, however died after birth due to 
severe skeletal muscle defects [118,119]. In lens development, 
RB, however, appeared to function in a perfectly cell autonomous 
manner [119].  Therefore, during embryonic development, pRb 
could function in both non-cell and cell autonomous manners.  
Molecular aspects of the non-cell autonomous phenomena in RB-/- 

cells during development are remained to be elucidated.

Pocket Proteins under the Control of 
Transforming Growth Factor β
Transforming growth factor (TGF) β exerts tumor-suppressing 
activities at least partially via the regulation of MCM7. The 
helicase activity of this molecule is directly inhibited by pRB 
[120-122]. The MCM complex is recruited to origin recognition 
complexes to initiate transcription through its helicase activity 
in early S phase.  The MCM7-pRB interaction mediated by TGFβ 
prevents pre-replication complex activation by the MCM complex 
until the G1/S boundary is reached [122]. TGFβ stimulates E2F4/5 
to form complexes with HDAC and pocket proteins p107 or p130, 
resulting in the expression of c-MYC or CDC25A, respectively 
[123,124]. Overexpression of MCM7 is observed in a wide range 
of cancers. Furthermore, suppression of MCM7 decreased BrdU 
incorporation in lung and bladder cancer cells [125]. Additionally, 
TGFβ stimulates E2F1 to form a complex with p300/CREB-
binding protein-associated factor (P/CAF), allowing pRB to induce 
proapoptotic proteins [126]. The E2F1-pRB-P/CAF complex also 
induces proapoptotic proteins such as p73 and caspase7 in 
response to DNA damage [57]. Thus, pRB in cooperation with 
its family members plays a pivotal role in deciding whether to 
allow cells to go through  apoptosis or to progress through the 
cell cycle.

pRB in Cellular Senescence
The formation of senescence-associated heterochromatin 
foci (SAHF) contributes to cell cycle exit by directly silencing 
proliferation-promoting genes [127-130].  During the SAHF 
formation, pRB cooperates with histone chaperones HIRA/
ASF1a [131].  Phosphorylation of HIRA and HP1 promotes SAHF 
formation by recruiting macroH2A, HP1γ, or HMGA [130,131]. 
pRB and p16INK4a are indispensable for SAHF formation induced 
by oncogene Ras, but p53 and p21CIP1 are dispensable [128,132]. 
In addition, the induction of SAHF in response to DNA-damage 
required the mitogen-activated protein kinase p38 [133]. It is 
also notable that pRB is required for the senescence-associated 
loss of trimethylated K4 histone H3, which is dependent on H3K4 
demethylases including Jarid1a and Jarid1b [134].

Activation of oncogene products such as Ras triggers cellular 
senescence, a state of irreversible cell growth arrest when cells 
are mostly intact; this is called oncogene-induced senescence (OIS) 
[127,135]. In OIS, pRB and E2Fs colocalize to Promylocytic leukemia 
(PML) bodies and suppress E2F targeted promoters [136,137]. Of the 
E2F family members, only E2F7 is upregulated in OIS. Once induced, 
E2F7 represses expression of the E2F-targeted genes. Of the E2F 
family members, only E2F7 is capable of compensating for the loss 
of pRB to suppress mitotic genes [138]. 

Knockdown of pRB in cells reversed the changes in gene expression 
during senescence and allowed them to reenter the cell cycle, 
while knockdown of p107 or p130 could not reverse the changes 
of senescence [139]. This effect represents an unique function of 
pRB in inducing cellular senescence. Yet, senescence induced by 
pRB inactivation depends on the function of p130 [88], suggesting 
redundant functions shared by pRB family members in controlling 
cellular senescence.
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Conclusion
In this review article, we collected the published findings of the 
pleiotropic aspects of pRB function, and tried to connect them to 
the interaction with numerous binding partners. Because of the 
space limitation, we did not refer to the recent progress in our 
understanding of pRB functions in stem cells, inflammation, and 
other unexpected aspects of metabolic control. We propose that, 
in light of its strong clinical relevance, pRB should be continuously 
studied to elucidate its functions relating to different steps during 
carcinogenesis, which would be a valuable resource for cancer 
therapeutics.
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